Chapter 1: Linear Equations

revised 2018

Cartesian Plane or Coordinate Plane

You can locate any point on the Cartesian plane by an ordered pair of numbers (__,__) called the

Note: We draw arrows to indicate that the plane goes on forever. The first number in the pair is the _____ coordinate. It describes the number of units to the ______or_____ of the origin.

The second number is the _____ coordinate. It describes the number of units ______or _____of the origin.

Ex: Write the coordinates of each point.

Ex: Write the coordinates below on the Cartesian plane.

Slope and y-intercept

Every line can be represented by the equation:

The variable 'a' represents the steepness or slant of the line. The name given to 'a' is ______or _____. It is calculated by the formula: 'a' =

Which slope is positive?

How to calculate the slope 'a'

Steps:

- 1. Label the points (x_1, y_1) (x_2, y_2)
- Plug numbers in formula for 'a'

The variable 'b' represents the point where the line crosses the y-axis. The name given to 'b' is ______or

Do Not Copy

How to find the equation of a line when "b" is clear

Steps

- 1) Calculate 'a'
- 2) Find 'b' by looking on the graph.

Ex: Find the equation for each case.

Exceptions

<u>Finding the equation of a line</u> ("b" is unknown)

Steps

- Calculate 'a' and place it in y = ax + b

 Find 'b' by plugging in a point (x, y) and solve for 'b'
- 3) Write final answer in format

$$y = ax + b$$

Write the equation

X	1	2	3
y	25	35	45

Convert from general to functional form: <u>Steps</u>

- 1) Bring everything to the other side except 'y'
- 2) Divide by # in front of 'y'

Convert 2x + 3y + 9 = 0 to functional form and find slope and y intercept

Ex: Convert to functional form and find slope and y intercept

1)
$$3x + 2y - 10 = 6$$

2) 40x = 20y - 100

Steps:

- 1. Make a TOV
- 2. Pick points for x
- 3. Plug points in equation to get results for y
- 4. Plot the points and join the points to form a line. <u>Extend</u>

Ex 1: Graph
$$y = 2x + 4$$

Ex 2: Graph
$$y = -\frac{3}{4}x - 3$$

Ex 3: Graph
$$4 - y - 8 = 0$$

Ex 4: Graph y = 5

Ex 5: Graph x = -2

Intercepts of a line

Definition

x-intercept:

y-intercept:

Given a graph

Given a table of values

x	у
-2	0
-1	-2
0	-4

Given an equation

To find the x-intercept, we

To find the y-intercept, we

Example 1: 2x + 3y + 9 = 0

Example 2:	$y = \frac{2}{3}x + 9$
------------	------------------------

Find x-intercept	Find y-intercept			

Name the graph and write the equation

Sketch the graph according to the rule. 1. y = 2x + 1

2.
$$y = -2x + 1$$

3.
$$y = 2x - 1$$

4.
$$y = -2x - 1$$

Conclusion:

If the 'a' is ____, then the line goes ____.

If the 'a' is ____, then the line goes ____.

If the 'b' is ____, then the initial value is

the x-axis.

If the 'b' is ____, then the initial value is

Write the equation given a line that has:
 1. Slope = 2, y-int = 3

2. Slope =
$$\frac{2}{3}$$
, x-int = 6

3.
$$x-int = 3$$
, $y-int = 1$

4. What is the x-intercept of a line passing thru (4, -4) and (3, -1)?

VISUAL REPRESENTATIONS

Find the missing coordinate.

