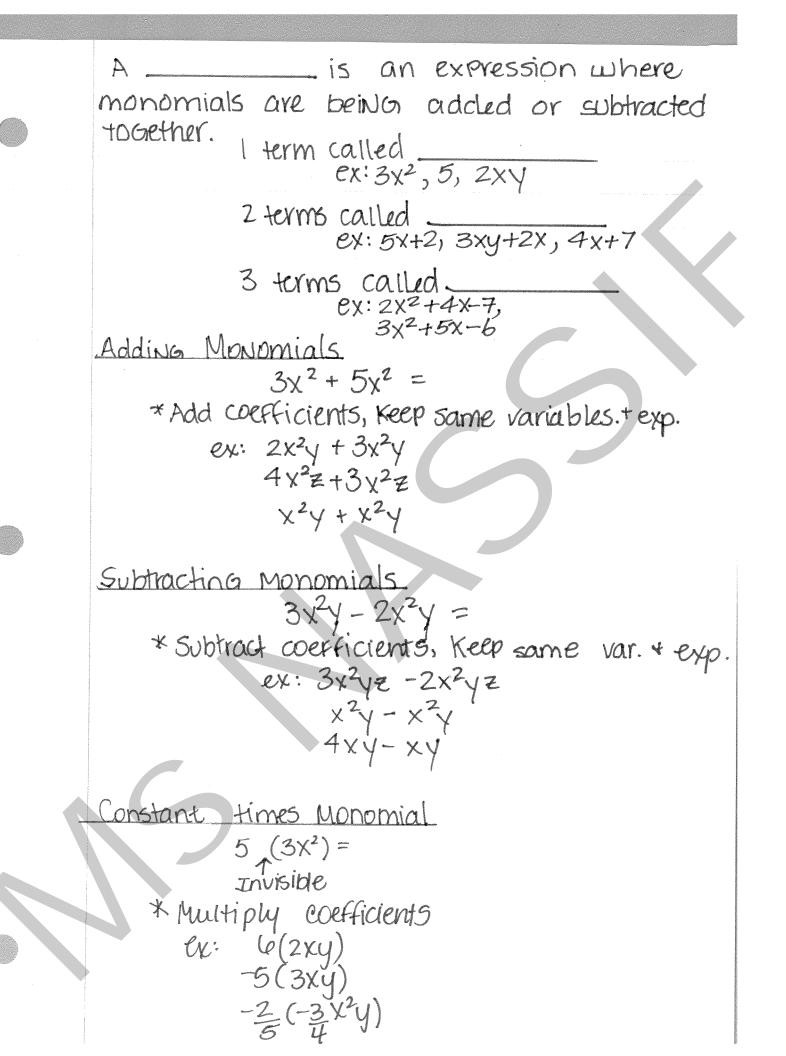
Chapter 4: Algebraic Expressions


A _____ is the Product of a Real number by a non-negative integer power of α . $\alpha \times n \gg \psi = \psi$

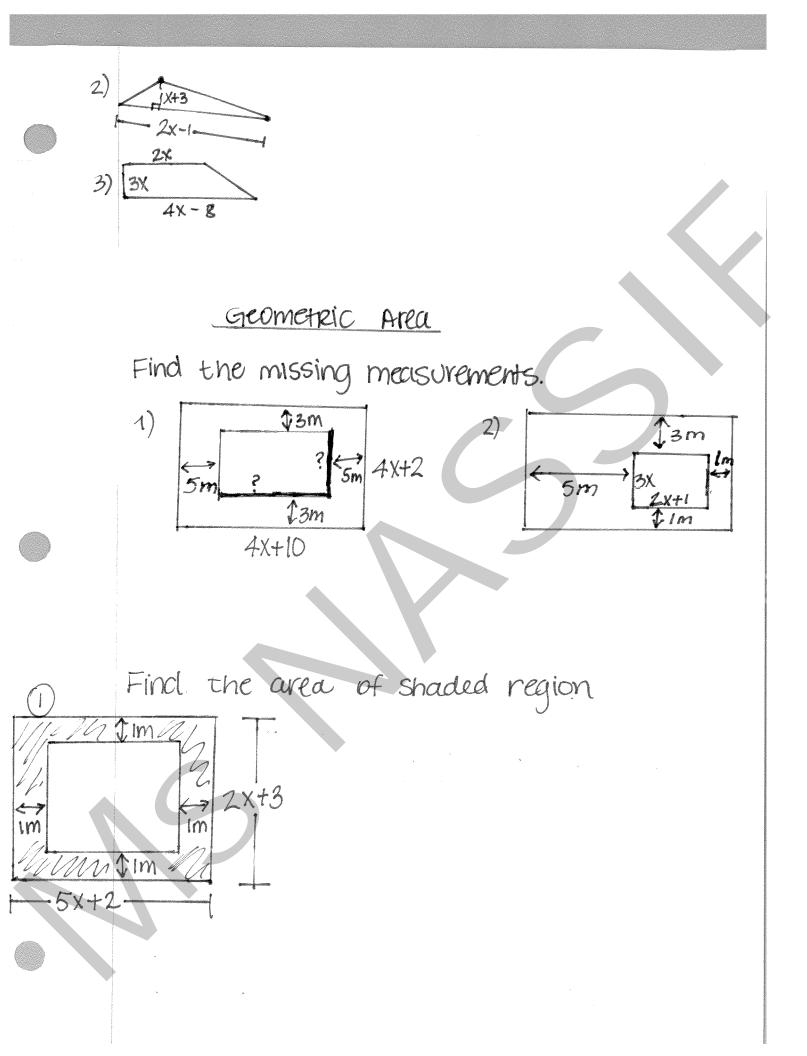
ex: Monomial or not? 1) $-2x^{3}$ 2) $3x^{-2}$ 3) $2x^{\frac{1}{3}}$

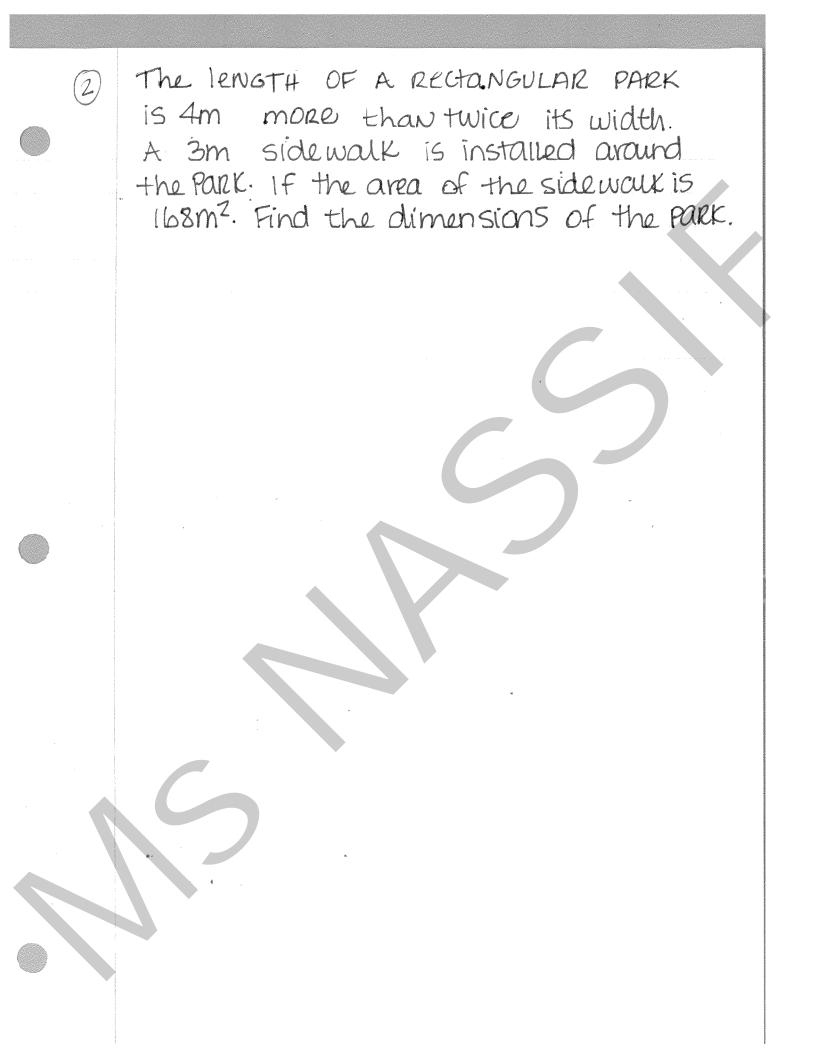
The _____ OF a monomial corresponds to the exponent on the variable. ex: Find the degree 1) -2x³= 2) 4x⁵= 3) 64x²=

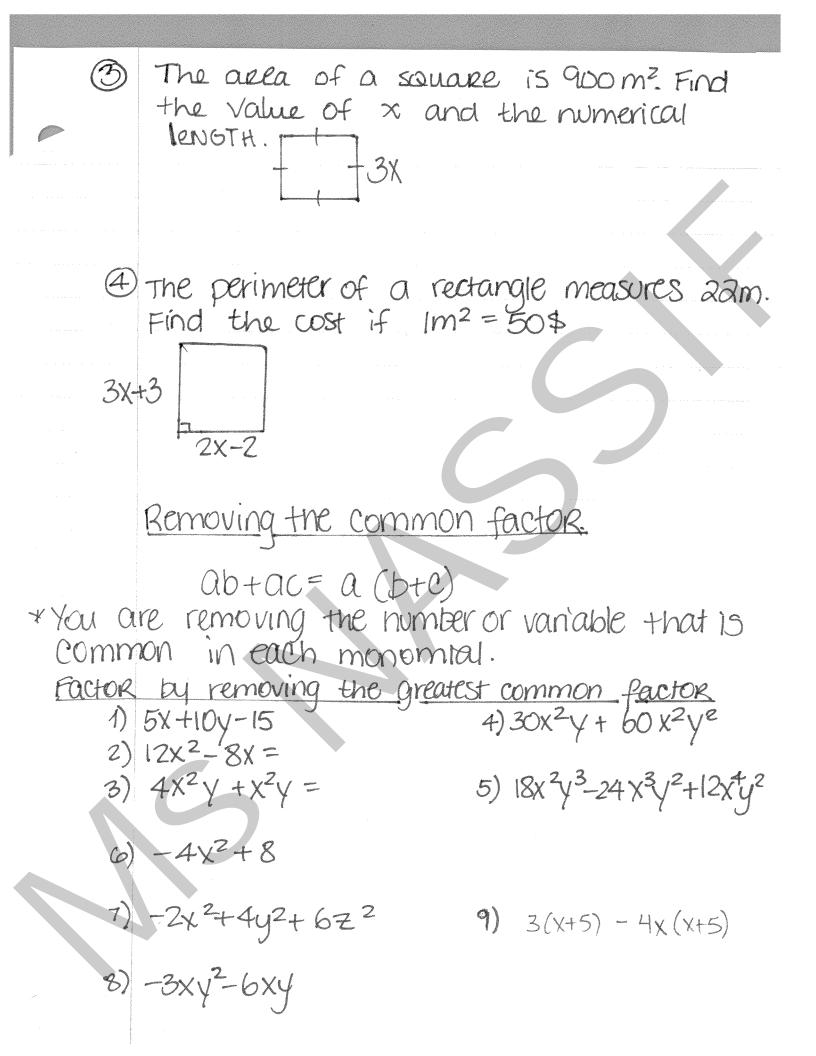
IF there are many variables, the _____ is equal to the sum of the exponents. ex: Find the degree 1) -3x²y³ 2)-4x⁴y⁶ 3) 5xy

Two monomials are called if they have the same variables with the same exponents. ex: Are they 'like terms'? 1) $3x^2$, $5x^2$ 2) $5x^2y^3$, $3x^2y^2$ 3) $3x^2$, $5x^3$ 4) $5x^2y^3$, $3x^3y^2$

Grouping Like terms $e_{x:1} - e_{x-z+3x+3}$ 2) 5X - (-5X) - 6X + 3(2X)3) $(-21 \times 2 + 13 \times -4) + (-12 \times 2 - 15 \times +6)$ 4) $(-21x^{2}+13x-4) - (-12x^{2}-15x+6)$ 5) $(20X^{2} + 10X) - (10X^{2} - 5X)$


Monomial times monomial $ax^m \cdot bx^n = (a \cdot b) \times m + n$ * MultiPly coefficients, add exponents. $e_{x}:1) 2x^{2} \cdot 3x^{4} =$ 2) $3xy \cdot 4xy^2 =$ 3) $-0x^2y^3 \cdot 2x^4y^4 =$ 4) $3/4xy \cdot \frac{1}{2}x^2y^3 =$ 5) $2xz^2 \cdot \frac{3}{4}xz^3 =$ 6) $5 \cdot \frac{1}{4}$ Distributive Property: constant × Binomials 1) - 3(5x - 2)2) 6(2+3b)3)5(3C-1) (-2h+1)(3)5) (3m-2)(-4) 6) 3(30+2) - 2(5a-9)7) 5(2a-6)-2+3(5a)-1a

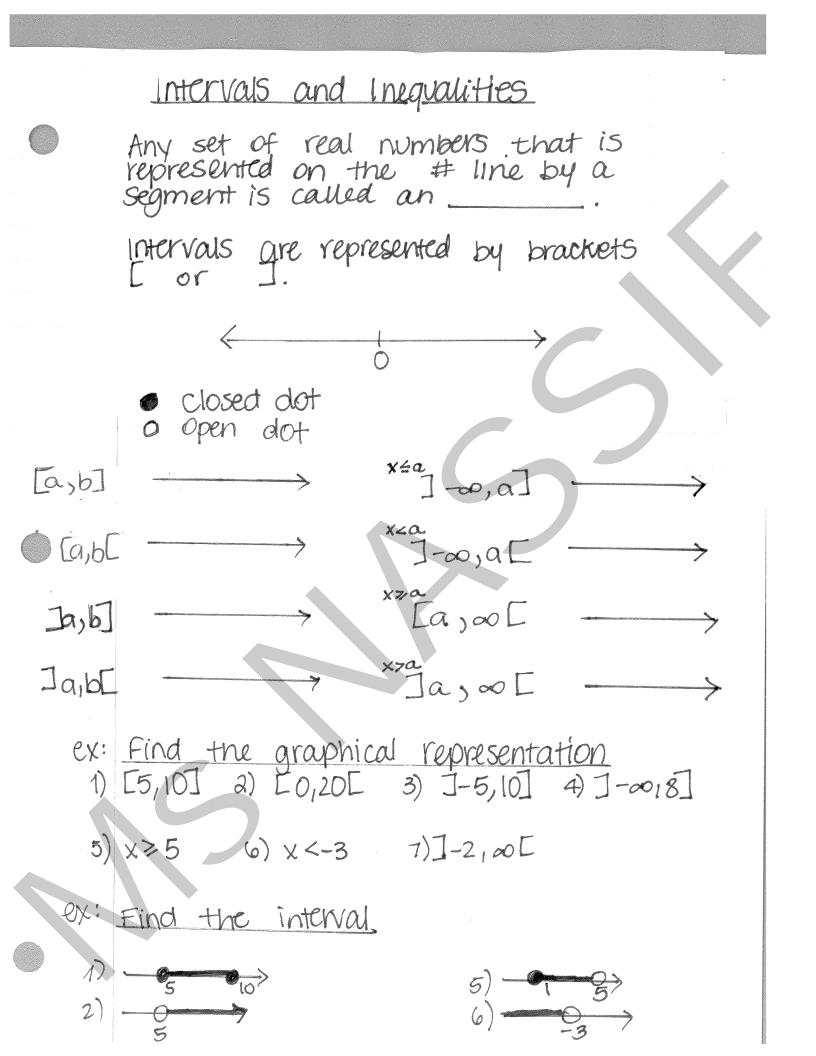

Multiplying monomial × Binomials 1) $15 \times (2X-1)$ 2) 4x(-2x+1)3) $(-2x+1)(4x^2)$ 4) $-3x(2x^2-2x+1)$ 5) $6x^{3}(x^{2}+1)$ $(6) - 2x^{2}(3xy + 2y)$ FOIL 1) (2x+3)(3x-2)2) (X-5)(2X-3)(2X-5)(2X+5)3)

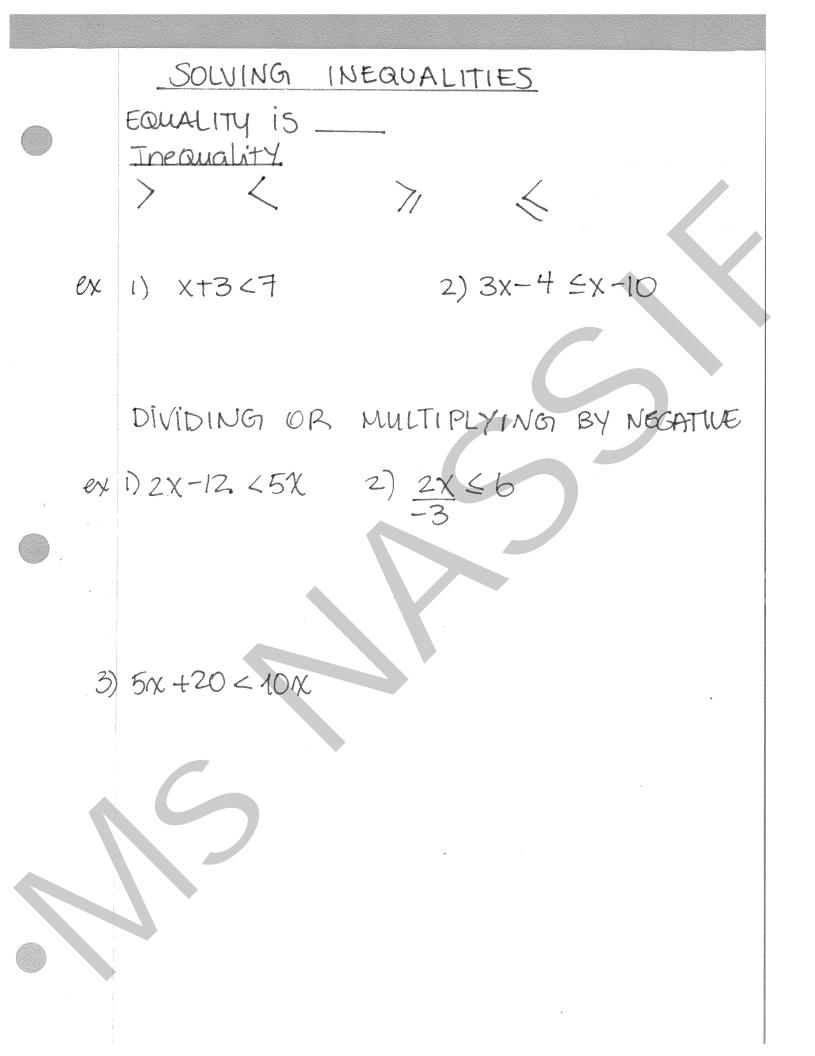

Divide
1)
$$\frac{-16x^4 + 32x^2}{-4x} =$$

2) $\frac{80x^4 + 20x^2 - 10x}{5} =$
3) $\frac{30x^4 - 20x^3 + 10x^2}{5x^2} =$
4) $\frac{-6x^2 + 2x}{-x} =$
 $\frac{0ralx \quad Of \quad Operations (Bedmas)}{1}$
1) $6x6 \pm 4 - 1$
2) $5 - 14 \pm 2$
3) $(8 - 5)^2 + (7 - 4)^2$
4) $\frac{-55 \pm 5}{7 + 4} + 1$
5) $80 \pm 3 - (2 - 1)$

Ø

Evaluate x=3, y=-4 1) Y=2+X X=4 Y=3 Z=6 2) Y-Z+XZ+6 X=4 Y=-2 3) X3-3-V 9=3 b=-1 4) $(a^2-b) \div 6$ p=5 m=-4 5) $p^2m \div 4$ AREA OF POLYGONS (ALGEBRA) Review b FAS A B W ex: Find the area 2X-4 3×+6


(i) Mint setting () (in the setting of the setting of the setting of the set of the


Identities Perfect Square Trainomial

$$(a+b)^2 = a^2 + 2ab + b^2$$

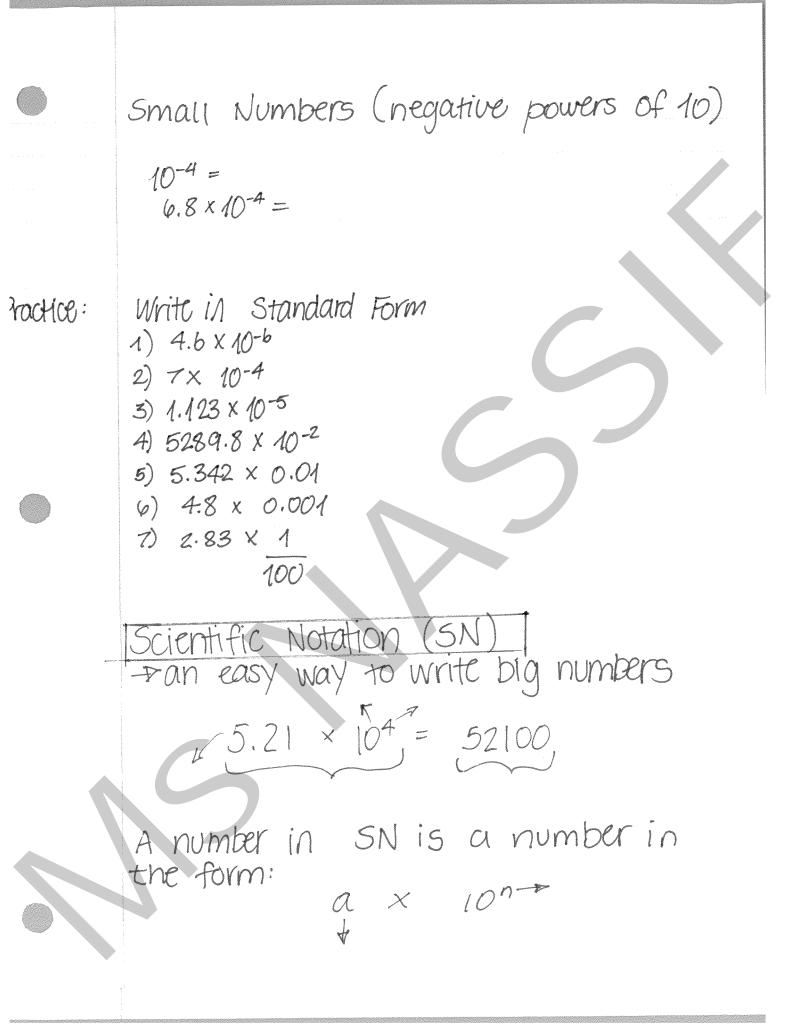
CX: $(2x+5y)^2 = .$
 $(-|x-3)^2 = (2x-b)^2 = -$

Square of a Difference $(a-b)^2 = a^2 - 2ab + b^2$ ex: (2x-5y) = $(3X - 4)^2 =$ (-x-6) =

Difference of 2 squares $(a+b)(a-b)=a^2-b^2$ (x: (7x+5)(7x-5)= (3x-1)(3x+1)=(x-3)(x+3)=

Chapter 3: Exponents qn = # $Q^n = Q \times Q \times Q \times \dots \times Q$ n times Button is: $ex: 5^2 =$ 5³ = $(-5)^2 =$ $(-5)^3 =$ $A a^{\circ} = 1$ ex: (-5)° = A a' = a ex: (-5)' = Rule 1: amxan = am+n When multiplying 2 quantities with the same base, keep the common base and add exponents. examples: 1) $2^2 \cdot 2^3 =$ 2) 2.2.2.2.2= 3) $(-2)^2 \times (-2)^4 =$ 4) $\frac{2b^2}{3} \times \frac{3b^3}{4} \times b =$ $\begin{array}{c} \overline{3} \\ \overline{5} \\ \left(-\frac{3}{4}m^2n \right) \\ \left(-\frac{5}{4}mn^7 \right) \\ \overline{7} \\ \overline$ $6)m^2n^4m^3n^6 =$ 7) $8m^3 \cdot 3m^2n \cdot 2mn =$ 8) 86 . 63

How to put an answer into \oplus exponents Extra Rule : $\alpha^{-n} = \frac{1}{\alpha^n}$ examples: 1) 5-3 = 2) $\frac{6^{-2}}{7^{4}} =$ 3) $4^{-2}ab^{-2} =$ 4) $7^{-2} =$ 5) $5^{-2} \cdot 5^{-1} =$ 6) $3m^{-1} \cdot 2m^2 =$ 7) $\frac{4x^2}{x^{-1}} =$ 8) <u>1</u> 4⁻²


Rule 2: $\frac{\alpha^m}{\alpha^n} = \alpha^{m-n}$ When dividing 2 quantities with the same base, keep the common base and subtract the exponents. $\begin{array}{c} \text{(xamples: 1)} & 5^{6} = \\ & 5^{4} \\ 2) & 5^{3} \\ & 5^{3} \\ \hline & 5^{3} \\ \hline & 3) & 5^{-4} \\ \hline & 5^{-6} \\ \hline & 4) & 4 \times^{9} & 9 \\ \hline & 1 & 5^{-6} \\ \hline \end{array}$ 4) $\frac{4 \times ^{8} y^{9}}{10 \times ^{5} y^{3}}$ 5) $(-3)^{2} \div (-3)^{-1}$ 6) $7 \times ^{2} y^{3} \times ^{-1}$ Зхү≇

Rule 3: $(a^m)^n = a^{m \times n}$ if an exponential expression is raised to another power, keep the base, multiply the exponents. xamples: i) $(2^2)^4 =$ 2) $((-2)^2)^4 =$ 3) $(a^3)^2 \cdot (b^2)^4$ $(a^{4})^{5}$ Rule 4: (a.b)^m-am.bm If you have a product raised to a power, you can raise each factor in the product 'to that power. xamples: 1) $(2X)^3 =$ 2) $(4.5)^2 =$ 3) $(5^{2}x^{-1}y^{2})^{3}=$ 4) $(2x^{2}\cdot 4x^{-1})^{2}=$

Rule 5:
$$\binom{\alpha}{b}^{n} = \frac{\alpha}{b^{n}}$$

xamples: $i \left(\frac{\alpha}{2} \right)^{2} =$
 $2i \left(\frac{3k}{2} \right)^{2} =$
 $3i \left(\frac{4k^{2}}{5k^{3}} \sqrt{2} \right)^{-2} =$
 $4i \left(\frac{5}{20} \sqrt{2} \right)^{3} =$

Powers of ten Power Form $104 = 10 \times 10 \times 10 \times 10 = 10 000$ $10^{3} =$ 102 = 10' = $10^{\circ} =$ 10-1 = $10^{-2} =$ 10-3= 10-4= Practice: Write in power form then solve. 1) 0.01 × 1000 = 2) 1000 × 100 = 3) 10 000 × 0.01= 4) 0.001 × 100 =

Large Numbers (positive powers of 10) Short Cut $4. \times 10^3$ $4 \times 10^3 = 4 \times$ 2.3 × 105= Write in Standard Form 1) 4.6 × 106 Practice 2) 7 × 104 3) 1.123 × 105 4) 5.2×10^3 5) 3.8 X (000 6) 214.86 × 10000

lx: 5.33 × 10ª = a × 10-n? The decimal point is moved a ÷ 10ⁿ j n decimal places to the left. Convert to SN. ex: 0.0008305 = steps: 1) Move the decimal after the first nonzero digit. 2) Count how many spaces the decimal has moved. 3) The exponent is negative if the opiginal number is small. Practice: 1) 0.105 2) 0.00285 3) 0.00048675 1) 4237,85 2) 3589642 3) 1423,2478

Find the exponent. 1) $3.5 \times 10 = 0.00035$ 2) 12.45 × 10 = 12450 3) 478.2 × 10 = 0.4782 4) 124.17 × 10 = 12417000 Multiplication of SN Calculate & put answer in SN. 1) $(6 \times 10^{-5}) \times (72 \times 10^{2}) =$ 2) $(15 \times 10^{-8}) \times (1.3 \times 10^{4})$ 3) $(3.2 \times 10^{-2}) \times (6.58 \times 10^{3})$