Chapter 3 – Analytic Geometry

Sub-topics:

Distance Midpoint Division Point

Distance between 2 points

The distance or length between 2 points A and B can be found by:

 $d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

The result is a

Note: You can label (x_1, y_1) either A or B.

Examples:

1. Find the distance between E(-10,50) and F(-20,-70).

2. Find the length between M(15, 27) and N(-14, 20).

3. Find the radius of a circle if the diameter's endpoints are A(15, 20) and B(20, 40).

Examples:

1. Find the midpoint between E(-3, 10) and F(-6, 20).

2. Find the coordinates of the point halfway between M(10,20) and N(-40,60).

3. Find the center of a circle if the diameter's endpoints are A(-10, 40) and B(-50, -80).

(Optional)

Finding an endpoint given midpoint

(Midpoint Backwards)

Example 1: M(6,3) is the midpoint of segment \overline{AB} with point A(2,0). Find the coordinates of B.

Example 2: Find the endpoint

A) M(6,4) and A(2,4) **B)** M(6,1) and T(10,4)

Division Point

Convert the fractions to a ratio

Note: A ratio may already be given as *a*: *b*.

The point of division is the point $P(x_p, y_p)$ that divides a segment with endpoints *C* and *D* in a specific ratio *a*: *b*.

Examples: 1) *A*(10, -20) *B*(30,20) 3: 2 *from A*

2) C(-6, 10) D(-14, 20) $\frac{3}{4} from D$