Chapter 3 - Analytic Geometry

Sub-topics:

\rightarrow Distance
\rightarrow Midpoint
\rightarrow Division Point

Distance between 2 points

The distance or length between 2 points A and B can be found by:
$d(A, B)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

The result is a

Note: You can label $\left(x_{1}, y_{1}\right)$ either \mathbf{A} or \mathbf{B}.

Examples:

1. Find the distance between

$$
E(-10,50) \text { and } F(-20,-70)
$$

2. Find the length between $M(15,27)$ and $N(-14,20)$.
3. Find the radius of a circle if the diameter's endpoints are $A(15,20)$ and $B(20,40)$.

Midpoint of a segment

To find the coordinates between a segment with endpoints A and B, we use:

$$
M(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

The result is a \qquad

Examples:

1. Find the midpoint between $E(-3,10)$ and $F(-6,20)$.
2. Find the coordinates of the point halfway between $M(10,20)$ and $N(-40,60)$.
3. Find the center of a circle if the diameter's endpoints are $A(-10,40)$ and $B(-50,-80)$.

(Optional)

Finding an endpoint given midpoint

 (Midpoint Backwards)
Example 1: $M(6,3)$ is the midpoint of segment

 $\overline{A B}$ with point $A(2,0)$. Find the coordinates of B.
Example 2: Find the endpoint

$\begin{array}{ll}\text { A) } M(6,4) \text { and } A(2,4) & \text { B) } M(6,1) \text { and }\end{array}$ $T(10,4)$

Division Point

Convert the fractions to a ratio

Note: A ratio may already be given as $a: b$.

The point of division is the point $P\left(x_{p}, y_{p}\right)$ that divides a segment with endpoints C and D in a specific ratio $a: b$.

$$
P\left(x_{p}, y_{p}\right)=\left(\frac{a x_{2}+b x_{1}}{a+b}, \frac{a y_{2}+b y_{1}}{a+b}\right)
$$

The result is a \qquad

Examples:

1) $A(10,-20) B(30,20)$

3: 2 from A
2) $C(-6,10) D(-14,20)$
$\frac{3}{4}$ from D

