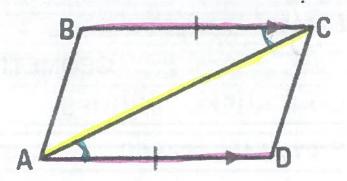
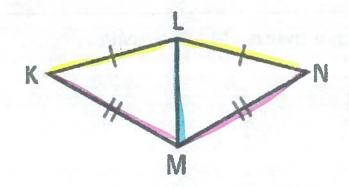

Prove $\triangle ABC \cong \triangle BCD$

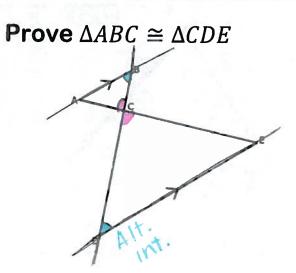
Diagonal BD is drawn in parallelogram ABCD shown below.


Statements	Reasons
1. $4ADB \cong 4DBC$	1. Alternate interior angles are congro
2. $\overline{BD} \cong \overline{BD}$	2. Share a common side
3. JABD ≈ JBDC	3. Alternate intenor and or are conor
4. $\triangle ABC \cong \triangle BCD$	4. ASA

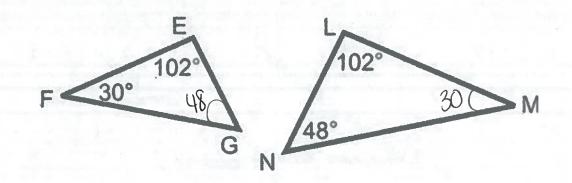
Prove that \triangle AMP \cong \triangle BMP.


Statements	Reasons
$1. \overline{MA} \cong \overline{MB}$	1. mismidpoint
2. APMA = APMB	2. C is a not bisector
3. $\overline{PM} = \overline{PM}$	3. Shart a common side
4. AAMD = ABMP	4. SAS

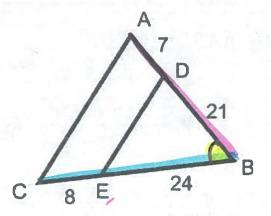
Prove $\triangle ABC \cong \triangle ACD$


	Statements	Reasons	
S	1. $\overline{PC} \cong \overline{AD}$	1. Given	
A	2.4PCA = 4DAC	2. Alternate intend angles are congr 3. Smile a common side	ment
S	3. $\overline{AC} \cong \overline{AC}$	3. Shave a common side)
-	4. $\triangle ABC \cong \triangle ACD$	4. SAS	

Prove $\Delta KLM \cong \Delta LMN$


Statements	Reasons
$S I. \overline{FI} \cong \overline{NL}$	1. Given
$52. \overline{KM} \cong \overline{NM}$	2. Given
$S 3. TM \cong TM$	3. Share a common side
4. ATIM = ALMN	4. SSS

SIMILARITY PROOFS	AA SAS	222
Prove $\triangle ABC \cong \triangle DEF$	10.5 A	$\begin{array}{c} B \\ 9 \\ 0 \\ 13.5 \end{array}$
Statements		Reasons
1. $\overline{BA} - \overline{AC} = \overline{BC}$		1. $10.5 = 13.5 = 9 = 1.5$
3. ED PF EF	AS -	3.796
2. 3. $\triangle ABC \cong \triangle DEF$		3. SSS
14,		朱,


	Statements	Reasons
A	1. JABC = JCDE	1. Atternate intenor angles are congruent
A	2. $4ACB = 4DCE$	2. Vertically apposte Angles are longive
	3. $AABC \cong ACDE$	3. AA
	4.	4.

Prove $\Delta EFG \cong \Delta LMN$

Statements	Reasons
A 1. & FEG = 4NLM	1. Given
A 2. AFGE = XINM	2 sum of interior angles in A = 18
3. $\Delta EFG \cong \Delta LMN$	3. AA
4.	4.

Prove $\triangle BDE \cong \triangle BAC$

Statements	Reasons
$1/\overline{BD} = \overline{BE}$	1. 21 = 24 = 0.75
A AB BC	M 28 32
3. 4 DBE = 4 ABC	3. Share a common angle
4. $\triangle BDE \cong \triangle BAC$	4. SAS