Chapter 6: Systems of equations

6.1 System of two first degree equations in two variables pg169-171

In this section, we discuss how to solve systems of 2 linear equations in two variables.

We have studied how the graph of a linear equation in two variables is a line in the plane consisting of all points that satisfy the linear equation.

A **solution** to a system of two linear equations in two variables is a point that satisfies **both** linear equations and is therefore a point on both lines.

Mrs. Nassif

For example, consider the following system of equations:

$$x+4y=5$$
 (-3)+ $4(2)=5$ Equation of line 1
 $2x-y=-8$ $2(3)-(2)=-8$ Equation of line 2

The point (-3,2) satisfies the first equation since -3+4(2)=5, and so (-3,2) is a point on line 1. The point (-3,2) also satisfies the second equation since 2(-3)-2=-8, and so (-3,2) is a point on line 2. Therefore (-3,2) is a *solution* to t system of equations because it satisfies *both* equations and is a *point* on both lines

GRAPHICAL METHOD

The graphical method of solving a system of two equations involves graphing the line corresponding to each equations and finding a point that is on both these lines.

Mrs. Nassif

NUMBER OF SOLUTIONS

An easy way to determine the number of solutions is to analyze the coefficients.

Case
$$a_1x + b_1y = c_1$$
 Solution is:
1 $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$ $S = \{x, y\}$
2 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$ $S = \emptyset$ None
3 $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ $S = \{(x, y) | a_1x + b_1y = c_1\}$ infinitely.

Ex: Determine the number of solutions

1.
$$(2x + 3y = 6)$$
 $(4x + 6y = 0)$

2. $(1x + 2) = 4$
 $(3x + 6) = 12$
 $(3x + 6) = 12$
 $(3x + 2) = 4$
 $(3x + 2) = 4$
 $(3x + 2) = 4$
 $(3x + 2) = 4$

SOLVING WORD PROBLEMS GRAPHICALLY PG 172

Ex: A charity sells t-shirts and long sleeve shirts.

# of T-shirts		Profit
	sleeve shirts	
150	200	1000\$
100	400	1200\$

Find the profit when 120 t-shirts and 300 long sleeve shirts are sold.

Mrs. Nassif

6.2 Algebraic solving of a two-variable first degree system

COMPARISON PG176 #6-8

Format Example
$$y = ax + b$$

$$y = -\frac{3}{5}x + 5$$

$$y = cx + d$$

$$y = \frac{1}{2}x - 3$$

Solve the example
$$y = \begin{bmatrix} -\frac{3}{5}x + 5 \end{bmatrix} \qquad y = \begin{bmatrix} \frac{1}{2}x - 3 \end{bmatrix}$$
Find y by plugging it in
$$y = \frac{1}{2}x - 3$$
CM of
$$5x + 5 = \frac{1}{2}x - 3$$

$$-6x + 50 = 5x - 30$$

$$-6x - 5x = -30 - 50$$

$$-\frac{11}{2}x = \frac{80}{11}$$
PoI = $\begin{bmatrix} 80 & 7 \\ 11 & 11 \end{bmatrix}$

$$x = 80/1$$

In Word Problems:

hour Hint: 'a' is the amount per dav student

'b' is the amount paid once

ex: $\begin{cases} a \text{ membership to a gym} \\ \hline bonus \text{ at a job} \end{cases}$

Ex: Two video clubs compete for clients. Club A has no membership fee but charges 4\$ per movie. Club B charges 20\$ for membership but only 3\$ per movie. What is the cost when the number of movies is the same?

X: # of movies

$$4x = 3x + 20$$

 $x = 20$ movies

$$V = 4(20)$$