

10.1 Two variable distributions

Contingency Tables

A contingency table illustrates a two-variable distribution. It is another way to display statistical data, like a scatter plant.

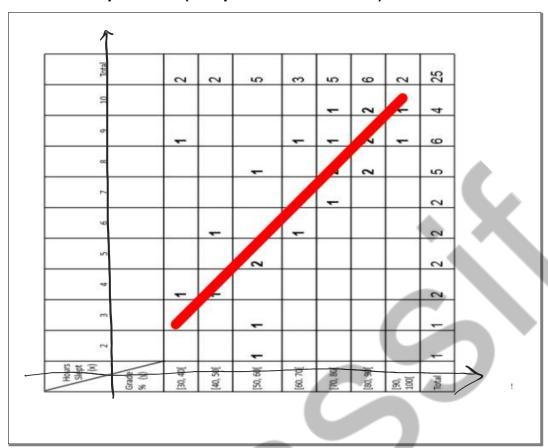
Ex: Here is some data about the number of hours of sleep (
that a student gets before an exam and their grade on t
exam (y).

(2,50) (3,50) (4,45) (4,35) (5,50) (5,53) (6,60) (6,45) (7,70) (7,64) (8 80) (8,55) (8,75) (8,78) (8,83) (9,79) (9,30) (9,89) (9,62) (9,93) (9,8 (10,85) (10,71) (10,92) (10,88)

Do you think there is a correlation between the two variab Fill in the table: Hours HHT 2 7 10 O 0 0 0 V [30, 40] 0 J 0 0 [40, 50[0 0 0 [50, 60[0 0 0 0 0 0 [60.70[0 0 0 [70, 80[0 0 0 [80, 90[0 [90, 100[

	-	7	
C	:	oviete	: _

large numbers on the diagonal, small numbers (look for zeros) in the corners


- the more obvious the pattern = stronger correlation

Positive correlation:

Negative correlation

When in a contingency table

Contingency Tables

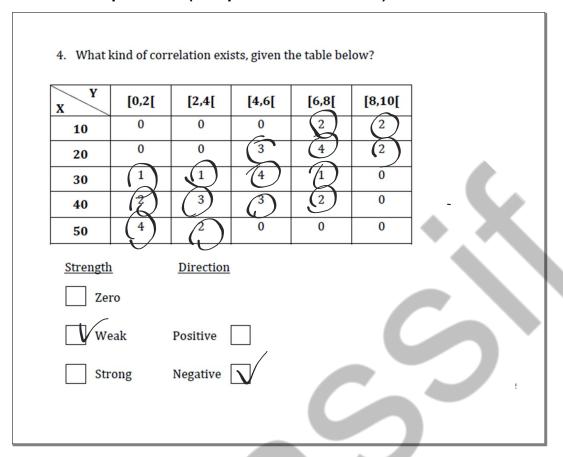
1. What kind of correlation exists, given the table below?

	X	[0,1[[1,2[[2,3[[3,4[[4,5[
	2	0	0	0	0	4	neg
	4	0	0	0	(3)	0	neg Strong
•	6	0	0	3	0	0	
	8	0	(3)	0	0	0	
	10	(3)	0	0	0	0	
	'						

2. What kind of correlation exists, given the table below?

X	[0,20[[20,40[[40,60[[60,80[[80,100[
10	(6)	0	0	0	0	
20	0	7	0	0	0	
30	0	0	(9)	0	0	
40	0	0	0	(8)	0	- 'JVOY
50	0	0	0	0	9	1.0

3. What kind of correlation exists, given the table below?

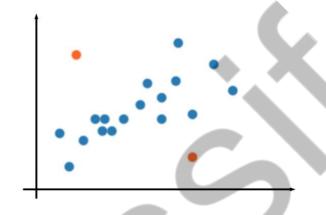

X	[0,1[[1,2[[2,3[[3,4[[4,5[
1	(3)		(5)	(2)	(3)
2	(2)	(<u>4</u>)	(2)	4	O
3	(§)	(2)	4	9	(4)
4	(3)	(3)	(3)	(3)	(3)
5	4	4	1	(6)	5)

<u>Strength</u> <u>Direction</u>

Zero

Weak Positive

Strong Negative


Handout	
	!

10.2 Linear correlation

Scatterplots

A scatterplot is a graph with a bunch of dots on

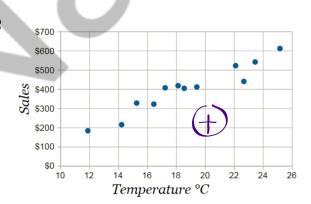
it. We do not connect the dots. The dot that is far away from the rest is called the OUTLIER.

Linear Correlation

A linear correlation is a relationship between the x and y variables.

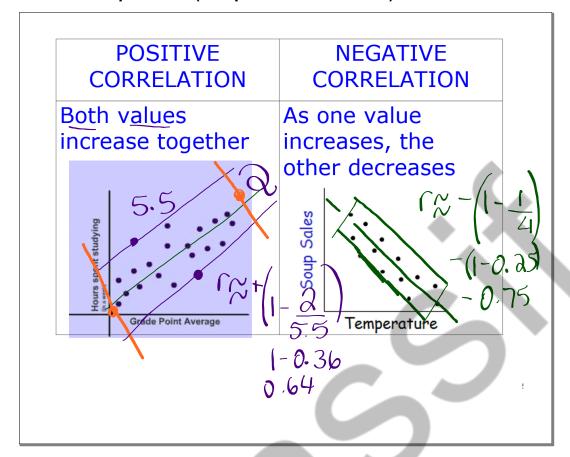
Ex: smoking and cancer

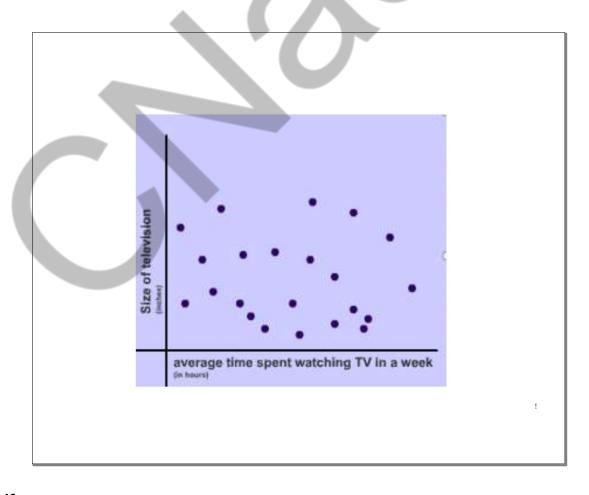
Ex: studying for a test and passing

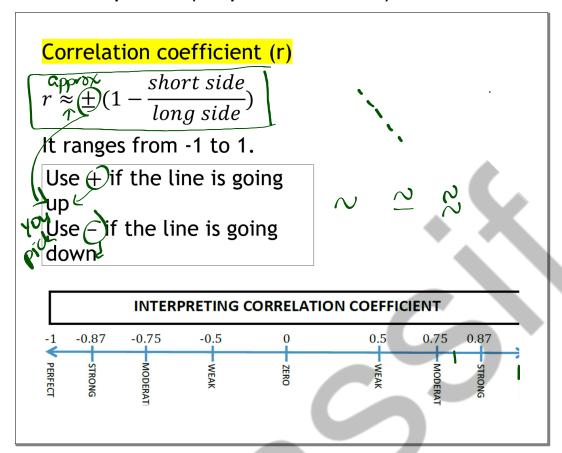

There is a correlation when the points on the graph tend to make a line.

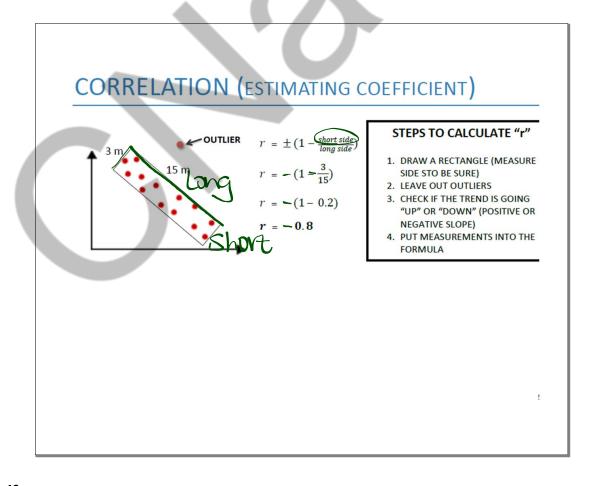
Example: Ice CreamSales

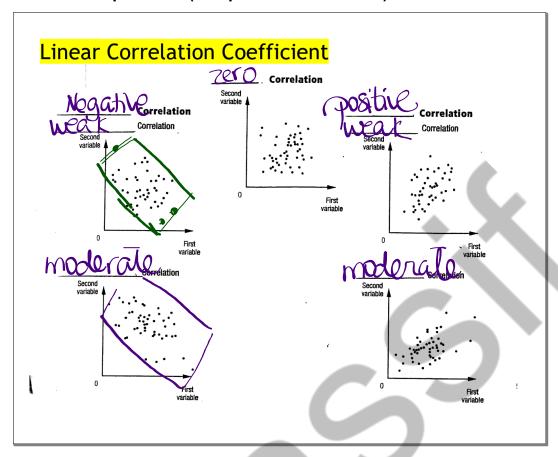
The local ice cream shop keeps track of how much ice cream they sell versus the temperature on that day, here are their figures for the last 12 days:

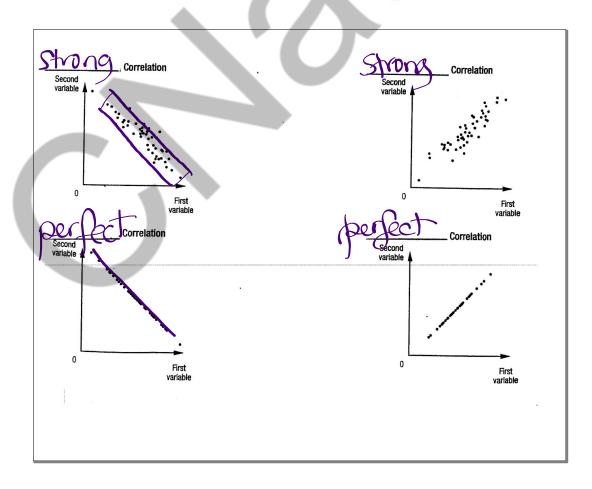

Ice Cream Sales vs Temperature					
Temperature °C	Ice Cream Sales				
14.2°	\$215				
16.4°	\$325				
11.9°	\$185				
15.2°	\$332				
18.5°	\$406				
22.1°	\$522				
19.4°	\$412				
25.1°	\$614				
23.4°	\$544				
18.1°	\$421				
22.6°	\$445				
17.2°	\$408				

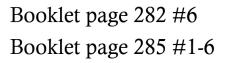

And here is the same data as a Scatter Plot:

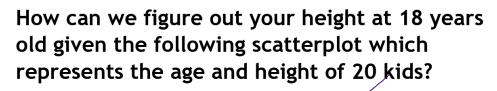


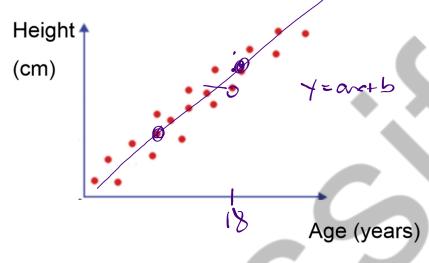

We can easily see that warmer weather and higher sales go together. The relationship is good but not perfect. It is **0.9575**.


466 Notes for Smartboard p539-566 (completed and checked)- Ch 10 Statistics.notebolMath 466

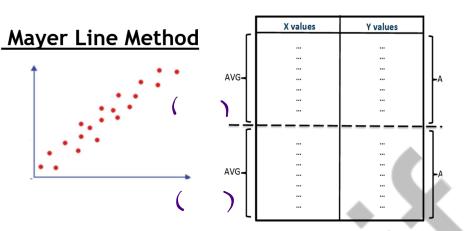








When a correlation is strong, we can predict values that occur in the future. Ex: doctor predicts how tall you will get as an adult.



REGRESSION LINE

In a scatterplot relating two variables, the line that best represents all of the points is called a regression line.

To find the regression line, we use the Mayer Line Method.

Steps

- 1) Put the x values in order.
- 2) Cut the table in half.
- 3) Find the average of each section.
- 4) Find the equation y = ax + b

Ex: The following points compares x: the age of a tree (years) in relation to y: circumference of a tree (cm):

(10, 39), (15, 55), (23, 68), (18, 50), (7, 26), (25, 72), (13, 44), (19, 65), (6, 23), (14, 48)

- 1. Find the regression line.
- 2. Find the circumference of a 15 year old tree
- 3. Find the age for a tree with a 100 cm circumference.

They be
$$(6.23)$$
 (7.26) (1.36) (1.36) (1.344) (1.3144) (1.3144) (1.3144) (1.3155) (1.3155) (1.3155) (1.3155) (1.3155) (1.3155) (1.3155) (1.3155) (1.3155) (1.3155) (1.3156)

No Solution Key Available

Write on looseleaf and hand in

Book Page 300 #4-5

Book page 301 #2-5