Name $\qquad$
package 3
Which function has a range of $]-\infty, 4]$ and is positive for $x \in[-5,-1]$ ?
a) $f(x)=4(x+5)^{2}-1$

b) $g(x)=-4(x+5)^{2}-1$
(c). $h(x)=-x^{2}-6 x-5$

$$
\begin{aligned}
& \frac{-\Delta}{4 a}=4 \\
& -b^{2}+4 a c=16 a \\
& -b^{2}-4 c=-16 \\
& b^{2}+44 c=16 \\
& 36+4(-5)=16
\end{aligned}
$$

d) $k(x)=-x^{2}+6 x+5$

Name $\qquad$

The volume of the prism shown below is $2 x^{3}-5 x^{2}+5 x-3$. If its height is $2 x-3$ what algebraic expression represents the area of its base?


Name $\qquad$

The following rectangle and right triangle are equivalent. What are the numerical dimensions of both shapes?


$$
A_{1}=A_{2}
$$

$$
l \times w=\frac{b h}{2}
$$

$$
(x-4)(2 x-6)=\frac{x(2 x)}{2}
$$

$$
x^{2}-14 x+24=0
$$

$$
\because \quad 2(2)-6
$$

Rectangle

$$
2 x^{2}-14 x+24=x^{2}
$$

$$
(x-12)(x-2)=0
$$

$$
x=2 \text { or } 12
$$

$$
=-2
$$

$$
\therefore x \neq 2
$$

$$
x=12
$$

$$
\begin{aligned}
& (x-4)(2 x-6) \\
= & (12-4)[(12) 2-6] \\
= & 8 \times 18
\end{aligned}
$$

$\therefore$ The length \& width At le peduncle is 8 and it units

$$
\begin{array}{ll}
\text { Triangle } & x \sqrt{5} \\
& (x)[2 x) \\
= & 12[2(12)] \\
= & 12 \times 24
\end{array}
$$

The height and length ot base is 12 and 24 units and the hypotenuse is $12 \sqrt{5}$ units long.
$\qquad$

The table below shows four algebraic operations. When they are performed and reduced to simplest form, they will show a pattern. Note that none of the denominators may be equal to zero.

| $\#$ | Algebraic Operation | Reduced Result |
| :---: | :---: | :---: |
| 1 | $\frac{x^{2}+3 x+2}{x+2}-\frac{(4 x+1)^{2}}{18 x^{2}+8 x+1}$ |  |
| 2 | $\frac{\left(x^{2}+4 x+3\right)(x+4)}{x^{2}+7 x+12}$ |  |
| 3 | $\frac{2 x^{2}-8 x-5}{4 x^{2}-1} \cdot \frac{2 x^{2}+3 x-2}{x-5}$ |  |
| 4 | $\frac{2 x^{2}+11 x+15}{?}$ |  |

What is the missing denominator in the 4th algebraic operation If we want to continue the pattern in the reduced result column?
operation NI

$$
\begin{array}{ll} 
& \frac{x^{2}+3 x+2}{x+2}-\frac{(4 x+1)^{2}}{\left(16 x^{2}+8 x+1\right.} \\
& \frac{\text { Operaliontion }}{} \begin{array}{ll}
2 x^{2}-9 x-5 \\
4 x^{2}-1
\end{array} \frac{2 x^{2}+3 x-2}{x-5} \\
= & \frac{(x+2)(x+1)}{x+2}-\frac{(4 x+1)^{2}}{(4 x+1)^{2}}
\end{array}
$$

Operation 拱 3

$$
=x
$$

$\therefore$ The forth operation must equal to $x+3$
Operation \#2

$$
\begin{aligned}
& \frac{\left(x^{2}+4 x+3\right)(x+4)}{x^{2}+7 x+12} \\
= & \frac{(x+3)(x+1)(x+4)}{(x+3)(x+4)} \\
= & x+1
\end{aligned}
$$

Operation 14 : Let ye tho denominator

$$
\begin{aligned}
& \frac{2 x^{2}+11 x+15}{y}=x+2 \\
& y=\frac{\left(2 x^{2}+1\right) x+15}{x+2}
\end{aligned}
$$

$\therefore$ The missing denominator of the $4^{\text {th }}$
Algebraic expression is $\frac{2 x^{2}+11 x+15}{x+2}$
$\qquad$

Which of the following four systems of equations does not have a real solution when $m>0$ ?
a) $y_{1}=-m$
$y_{2}=x^{2}-m$
(c) $y_{1}=-x^{2}$
$y_{2}=m$
b) $y_{1}=-x^{2}$
$y_{2}=-m$
d) $y_{1}=-x^{2}-n$
$y_{2}=-n$

Name $\qquad$

Function $g$ is defined by $g(x)=2 x^{2}+16 x+33$. Which of the following statements is false?
a) If $x \in \mathbb{R}$, then function $g$ is positive.
b) If $x \in[-4, \infty[$, then function $g$ is increasing.

$$
\frac{-b}{2 a}=\frac{-11}{2(2)}=-4
$$

(c) If $x \in[1, \infty[$, then function $g$ is decreasing.

$$
2(-4)^{2}+16(-4)+33
$$

d) The range is $y \in[1, \infty[$.

$$
=1
$$

Name $\qquad$
Perform the following operations and reduce your answers to their simplest forms with positive exponents.

$$
\text { 1. } \begin{aligned}
& \frac{4 x^{2}-4 x+1}{4 x^{2}-1} \cdot \frac{6 x^{3}+3 x^{2}-3 x}{x^{3}+x^{2}}=? \\
&=\frac{(2 x-1)^{2}+x-1}{(2 x-1)(2 x-1)} \cdot \frac{3 x(2 x-1)(x+1)}{x^{2}(x+1)}
\end{aligned}
$$

2. 

$$
\begin{aligned}
& \quad \frac{5 x+4 y}{2 a x+b y+a y+2 b x}-\frac{3 a+3 b}{a^{2}+2 a b+b^{2}}=? \\
& =\frac{5 x+4 y}{a(2 x+(+)+b(2 x+y)}-\frac{3(a+b)}{(a+b)^{x}} \\
& =\frac{5 x+4 y}{(a+b)(2 x+y)}-\frac{3}{a+b} \\
& =\frac{5 x+4 y-3(2 x+y)}{(a+b)(2 x+y)} \\
& =\frac{-x+y}{(a+b)(2 x+y)}
\end{aligned}
$$

$\qquad$

The volume of the prism shown below is $2 x^{3}+11 x^{2}+18 x+9$.
If its height is $2 x+3$ what two binomials, represent the dimensions of the base?


$$
V=2 x^{3}+11 x^{2}+18 x+8
$$

$$
\begin{aligned}
A b=\frac{v}{h} & =\frac{2 x^{3}+11 x^{2}+18 x+9}{2 x+3} \\
& =x^{2}+4 x+3 \\
& =(x+3)(x+1)
\end{aligned}
$$

$\therefore(x+3)$ and $(x+1)$ represents the dimension of the base
$\qquad$

- The Sunshine Circus Company has some amazing acrobats. In the Cartesian plane below, function $f$ shows the path of a person on a zip-line, while function $g$ displays the path of another performer bouncing from a trampoline. At a height of 80 feet the two performer's paths meet at points B and $D$.

The maximum height of the trampoline specialist and the minimum height of the zip-line performer have the same $x$-value on the Cartesian plane.
What is the rule of the function $g$ that maps the path of the trampoline specialist?

$$
f(x)=0.08(x-25)^{2}+62
$$



$$
\begin{aligned}
& f(x)=0.08(x-25)^{2}+62 \\
& 0=\left(25^{\prime}, 62\right)^{\prime} \\
& 25-0=25 \\
& 25+145-50 \\
& g(x)=2 a\left(50-x_{1}\right)(x-x z) \\
& 80=a(10-0)(10-50) \\
& 80=-40 a \\
& a=-2 \\
& g(x)=-2 b x(x-50) \\
&=-2 x^{2}+100 x
\end{aligned}
$$

$\qquad$

Perform the following subtraction, reduce your result and state all restrictions on the variable.

$$
\frac{x+1}{x^{2}-5 x+6}-\frac{x+5}{x^{2}-4 x+3}=?
$$

m- mint

$$
\begin{aligned}
& \frac{x+1}{x^{2}-5 x+6}-\frac{x+5}{x^{2}-4 x+3} \\
= & \frac{x+1}{(x-x)(x-y)}-\frac{x+5}{(x-3)(x-1)} \\
= & \frac{(x+1)(x-1)-(x+5)(x-2)}{(x-2)(x-3)(x-1)} \\
= & \frac{\left(x^{2}-1\right)-(x+3 x-10)}{(x-2)(x-3)(x-1)} \\
= & \frac{-3 x+9}{(x-2)(x-3)(x+1)} \\
= & \frac{-3(x-3)}{(x-2)(x-3)(x+1)} \\
= & \frac{-3}{(x-2)(x+1)}
\end{aligned}
$$

A grasshopper is standing on a stump that is 10 cm above the ground. It jumps from the stump and lands on the ground and then makes a second jump and stops.

- On ts first Jump, the grasshopper reached a maximum height of 18 cm of the ground when it had traveled a horizontal distance of 4 cm .
- During is second jump, the grasshopper reached a maximum height of 16 cm off the ground, a horizontal distance of 14 cm from the stump.


At what height was the grasshopper during its second Jump when it was a horizontal distance of 17 cm from the stump?

First Jump : $f(x)$

$$
\begin{aligned}
g(x) & =a(x-h)^{2}+k \\
0 & =a(10-14)^{2}+16 \\
-16 & =16 a \\
a & =-1 \\
g(x) & =-(x-14)^{2}+16 \\
g(17) & =-(17-14)^{2}+16 \\
& =7 \mathrm{~m}
\end{aligned}
$$

Second jump: $g(x)$
$x$ : horrontel distance
$f(x)$
$g(x)$ : Vertical distance

$$
\begin{gathered}
f(x)=a(x-h)^{2}+k \\
10=a(0-4)^{2}+18 \\
+8=16 a \\
a=\frac{-1}{2} \\
f(x)=\frac{-1}{2}(x-4)^{2}+18 \\
0=\frac{-1}{2}(x-4)^{2}+18 \\
(x-4)^{2}=36 \\
x=-2 \text { and } 10
\end{gathered}
$$

$\qquad$

The polygons shown below have the following properties:

- $\triangle A B C$ is an isosceles triangle and DEFG is a rectangle
- The perimeter of $\triangle A B C$ is 36 units
- The perimeter of DEFG is 34 units


Given the above information, determine if the two figures are equivalent in area. Justify your decision.

$$
\begin{align*}
& P_{\Delta}=(6 x+1) z+(y+3)=36 \\
& 12 x+y+5=36 \ldots(1)  \tag{1}\\
& 2(1+\omega)=34 \\
& P_{0}=2(y+5)+(2 x+1)]=34 \\
& 2 x+y+6=17 \ldots(2)
\end{align*}
$$

$$
(1)-(2)
$$

$$
\begin{array}{r}
12 x+y+5=36 \\
2 x+y+6=17 \\
\hline 10 x-1=19 \\
10 x=20 \\
x=2
\end{array}
$$

$$
\text { Put } x=2 \text { into }(2)
$$

$$
2 x+y+6=17
$$

$$
y=7
$$

$$
\begin{aligned}
A_{p} & =l \omega \\
& =(y+5)(2 x+1) \\
& =(7+5)[2(2)+1] \\
& =12 \times 5 \\
& =60 n^{2}
\end{aligned}
$$

Add a point so that $A H=H C$

$$
2(2)+y+6=17
$$

$$
\begin{aligned}
& B C^{2}-H C^{2}=B H^{2} \\
& (6 x+1)^{2}-\left(\frac{y+3}{2}\right)^{2}=B H^{2} \\
& {[6(2)+1]^{2}-\left[\frac{7+3}{2}\right)^{2}=B H^{2}} \\
& B H^{2}=144 \\
& B H=12 u \\
& A \Delta=\frac{6 h}{2} \\
& =\frac{12 u+3)}{2} \\
& =\frac{12(7+3)}{2}=60 u^{2}
\end{aligned}
$$

$$
\begin{gathered}
60 u^{2}=60 u^{2} \\
A_{\Delta}=A_{0}
\end{gathered}
$$

$$
A_{\Delta}=A_{0}
$$

$$
\Gamma \Delta-A D
$$

$\therefore$ Yes, they are equivalent figures

Consider the following systems of equations where $a>0, b>0 \& c>0$ and $a \neq b \neq c$.

1) $y=\frac{a}{b} x-c \quad \& \quad y=\frac{a}{b} x+c \quad \frac{a}{b} x-c=\frac{a}{b} x+c$
2) $y=x^{2}+a^{2} \quad \& \quad y=-2 a x$
3) $y=\frac{a}{b} x-c \quad \& \quad y=-\frac{a}{b} x+c$

Which of the above systems of equations have only one solution?
a) Systems 1 and 2 only
b) System 3 only
c) Systems 2 and 3 only
d) System 2 only
$\qquad$

In the chain of operations below, the numerators and denominators of the rational expressions are never equal to zero.

$$
\frac{7 x-3}{x^{2}+3 x-4}+\frac{x^{2}+x-12}{x^{2}-9} \times \frac{x^{2}+2 x-3}{x^{2}+5 x+4}=?
$$

Perform the operations and reduce your final answer.

$$
\begin{aligned}
& \frac{7 x-3}{x^{2}+3 x-4}+\frac{x^{2}+x+2}{x^{2}-9} \times \frac{x^{2}+2 x-3}{x^{2}+5 x+4} \\
= & \frac{7 x-3}{(x+4)(x-1)}+\frac{(x+4)(x-3)}{(x+3)(x-3)} \times \frac{(x+3)(x-1)}{(x+4)(x+1)} \\
= & \frac{7 x-3}{(x+4)(x-1)}+\frac{x-1}{x+1} \\
= & \frac{(x-3)(x+1)(x-1)(x-1)(x+4)}{(x+4)(x-1)(x+1)} \\
= & \frac{\left(x^{2}+4 x-3\right)+\left(x^{2}-2 x+1\right)(x+4)}{(x+4)(x-1)(x+3)} \\
= & \frac{\left(7 x^{2}+4 x-3\right)+\left(x^{3}+2 x^{2}-7 x+4\right)}{(x+4)(x-1)(x+3)} \\
= & \frac{x^{3}+9 x^{2}-3 x+1}{(x+4)(x-1)(x+3)}
\end{aligned}
$$

$\qquad$

A bug crawled along a graph projected on the screen of a Smart Board as shown in the diagram below.

- It started along the parabola defined by $f(x)=-x^{2}-16 x-60$ through points $A, B$ and $C$.
- At point $C$, it followed a new parabola defined by $g(x)$ and passed through the points C, D, E and F.
- When it reached point $F$, it flew of the Smart Board and out an open window.
- Point B is the maximum height of $(x)$ and point E is the minimum height of $g(x)$.
- Point $D$ is located at $(0,-15)$ and point $F$ is located at $(8,-7)$.


Calculate coordinates $B$ and $E$
$f(x)=-x^{2}-16 x-60$
$0=-x^{2}-16 x-60$

$$
x^{2}+16 x+60=0
$$

$$
(x+6)(x+10)=0
$$

$$
x=-6 \text { and }-10
$$

$$
V(x, y)
$$

$$
x=\frac{-b}{2 a}
$$

$$
=\frac{-(-16)}{2(-2)}
$$

$$
f(x)=-x^{2}-16 x-60
$$

$$
f(-8)==\left\{(-8)^{2}-166+8-60\right.
$$

$$
=4
$$

$B(-8,4)$

1)     - 

$$
\begin{gather*}
a x^{2}+b x+c \\
\hat{g}(x)=a x^{2}+b x-15 \\
0=a(-10)^{2}+1(-10) x-15 \\
0=100 a-10 b-15 \ldots(1)  \tag{1}\\
f(7)=a(8)^{2}+b(8)=15 \\
-7=64 a+8 b-15 \\
8 b=-64 a+8 \\
b=-8 a+1 \ldots(2) \\
p u+(2) \text { into }(1) \\
0=100 a-10 b-15 \\
0=100 a-10(-8 a+1)-15 \\
15=180 a-10 \\
25=180 a \\
a=\frac{8}{36}
\end{gather*}
$$

$$
\text { Put } \bar{a}=\frac{5}{36} \text { into }(2)
$$

$$
b=-6 x+1
$$

$$
b=-8\left(\frac{5}{36}\right)+1
$$

$$
b=\frac{-1}{9}
$$

$$
\left.g^{\prime}(x)=\frac{5}{36} x^{2}+\frac{1}{9}\right)(-15
$$

$$
F(-b, y)
$$

$$
\begin{aligned}
& A(x, 0) \\
& B(-10,0)
\end{aligned}
$$

$$
x=\frac{-b}{2 a}=\frac{-\left(-\frac{1}{6}\right) x}{2\left(\frac{1}{6}\right)}=0.4
$$

$$
f(x)=\frac{5}{3} x^{2}-\frac{1}{4} x-15
$$

$$
g .4 .4=\frac{5}{16}(0.4)^{2}-\frac{1}{9}(0.4)-15
$$

$$
=-30.02=\frac{-676}{4 x}
$$

$$
E(0.4,-30.02)
$$

Name $\qquad$

Perform the following operations and present your final answer as a simplified rational expression where $x \neq-3$ and $x \neq 3$.

$$
\frac{1}{x^{2}-6 x+9}-\frac{1}{x^{2}-9}+\frac{3 x^{2}+27}{x^{2}+6 x+9}=?
$$

a) $\frac{-2}{(x-3)^{3}}$
b) $\frac{4}{3(x-3)^{2}}$
c) $-\frac{1}{3}$
d) $-\frac{3(x+3)^{2}}{(x-3)^{2}}$

$$
\begin{aligned}
& \frac{1}{x^{2}-6 x+9}-\frac{1}{x^{2}-9}=\frac{-3 x^{2}+27}{x^{2}+6 x+9} \\
= & \frac{1}{(x-3)^{2}}-\frac{1}{(x+3)(x-3)} \times \frac{(x+3)^{x}}{-3(x+3)(x-3)} \\
= & \frac{1}{(x-3)^{2}}-\frac{1}{-3(x-3)^{2}} \\
= & \frac{-4}{(x-3)^{2}}
\end{aligned}
$$

Name $\qquad$

Consider the quadratic functions shown in the Cartesian plane below. The following additional information ls also true:

- $f(x)$ and $g(x)$ share the sane y intercept at point $C$
- The vertex of $f(x)$ is located at $(-5,-5)$


State the nile for $g(x)$ in factored form.

$$
\begin{aligned}
& f(x)=a(x-h)^{2}+k \\
& 4=a(-8+5)^{2}-5 \\
& 9=9 a \\
& a=1 \\
& f(x)=1(x+5)^{2}-5 \\
& f(0)=\left(0+a^{2}-5\right. \\
&=20 \\
& C(0,20) \\
& \quad g(x)=\frac{1}{2} x^{2}+7 x+20 \\
&=\frac{1}{2}\left(x^{2}-14 x+40\right) \\
&=\frac{1}{2}(x-4)(x-10)
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=x^{2}+b x+20 \\
& 8=a(2)^{2}+2 b+20 \\
& -12=4 a+2 b \\
& -6=2 a+b \ldots(1) \\
& 1 \\
& 0=\left(10^{2}\right) a+b(10)+20 \\
& -20=100 a+10 b \\
& -2=10 a+b \ldots(2)
\end{aligned}
$$

$$
(1)-(2)
$$

$$
-6=2 a+b
$$

$$
\frac{-2=10 a+b}{-4=-8 a}
$$

$$
a=\frac{1}{2}
$$

$P_{\text {ut }} a^{\frac{1}{2}} \operatorname{in} \operatorname{lo}_{0}(2)$

$$
\begin{aligned}
2 & =10 a+b \\
2 & =\left(\frac{1}{2}\right)(10)+b \\
b & =-7
\end{aligned}
$$

SOLUTION \#2

$$
y=a(x-
$$

$$
\begin{aligned}
& y=a\left(x-x_{1}\right)(x-10) \\
& 8=a\left(2-x_{1}\right)(2-10) \quad a=\frac{8}{\left(2-x_{1}\right)(2-10)} \ldots(1) \\
& 20=a \cdot\left(10-x_{1}\right)(0-10) \\
& \text { Put (1) into (2) } \\
& \text { Put } x_{1} \text { into (1) } \\
& 20=\frac{8}{\left(2-x_{1}\right)(2-10)}\left(.0-x_{1}\right)(0-10) \\
& a=\frac{8}{(2-x)(2-10)} \\
& \begin{array}{l}
=\frac{8}{(2-4)(2-10)} \\
=\frac{16}{16}
\end{array} \\
& \text { = } \frac{1}{1 /}_{\prime} \\
& \text { - } 10 x_{1}=40 \\
& x_{1}=4
\end{aligned}
$$

